Buscar en el blog

24 nov 2010

Teorías del Origen de la Vida


INTRODUCCION



El estudio científico del origen de la vida se relaciona con el concepto filosófico de abiogénesis que, en su sentido general, es la generación de vida a partir de materia inerte y, en una definición más moderna, aborda la aparición de las primeras formas de vida a partir de compuestos químicos primordiales. La generación de las formas de vida más complejas a partir de las más simples es dominio de la teoría de la evolución. Estas teorías no pretenden discernir sobre aspectos religiosos que adjudican una voluntad divina en el origen de la vida (creacionismo), ni sobre aspectos metafísicos que ilustren sobre las causas primigenias.
El origen de la vida es un problema difícil de afrontar. A pesar de ello, el estado actual de la ciencia permite sugerir una hipótesis válida sobre cómo surgió la vida en la Tierra.
Todos los seres vivos están constituidos por sustancias orgánicas: proteínas, glúcidos o hidratos de carbono, lípidos o grasas y ácidos nucleicos. Fueron varios los científicos, destacando a Alexander Oparin y Stanley Miller, los que elaboraron teorías sobre la formación de esos componentes esenciales para los organismos vivos.
Descubrir que la evolución es inherente a la vida, fue el criterio clave para emprender el siguiente trabajo, que los caminos creativos que la vida opta para la vasta diversidad que observamos, no es otra cosa que el producto de su existencia desde el momento el que la materia se transformo en vida y conciencia.



I. Teoría Creacionista


¿Quiénes la postularon?

· El Arzobispo Ussher
· Gregor CuVier


Postulados de la Teoría


· El origen de la especie humana, se hallaban contenidas a la Biblia, concretamente en el capítulo de el Génesis. Estas ideas, aunque hoy pueden parecer ingenuas, se mantuvieron vigentes hasta bien entrado el siglo XIX, y cualquier opinión en contra era tachada de herejía y ridiculizada por inmediato por la Ciencia Oficial, vigente en aquella época; que defendía las leyes bíblicas.
· Afirmar que el hombre había sido creado en el año 4.004 a.C., según los cálculos que el realizara sumando las edades de Adán y los profetas de Israel que se contenían en la Biblia. Ideas de este estilo no satisfacían plenamente a una serie de investigadores, pues si todos los seres vivientes habían sido creados por Dios al principio de los tiempos con aspectos a los actuales.
· La Iglesia respondió que aquellos restos fosilizados de animales eran de los seres ahogados en el diluvio universal y que no tuvieron cabida en el Arca de Noé.
· La Tierra había sufrido una serie de catástrofes geológicas que hicieron desaparecer y sepultaron a los seres vivos, seguidas de sucesivas creaciones, la última que está escrita en el Antiguo Testamento.



II. Teoría de la Generación Espontánea.




¿Quién la postuló?

· Aristóteles.




Postulados de la Teoría


· Desde la antigüedad se pensaba que la vida podía surgir por generación espontánea, a partir de la combinación de los cuatro elementos que se consideraban esenciales: aire, fuego, agua y tierra.
· Se propuso que gusanos, insectos y peces provenían de sustancias como el sudor o el rocío, como resultado de la interacción de la materia "no viva" con "fuerzas capaces de dar vida".
· Francisco Redi empezó a demostrar la falsedad de la teoría de la "generación espontánea".



III. Teoría de la Biogénesis


¿Quién la postuló?


· Francisco Redi



Postulados de la Teoría


· La biogénesis es aquella teoría en la que la vida solamente se origina de una vida preexistente.
· Todos los organismos visibles surgen sólo de gérmenes del mismo tipo y nunca de materia inorgánica.
· Si la vida alguna vez se originó de materia inorgánica, tuvo que aparecer en la forma de una célula organizada, ya que la investigación científica ha establecido a la célula como la unidad más simple y pequeña de vida independiente visible.
· La presencia de la clorofila y de sustancias similares, las cuales, son productoras de células.




IV. Teoría Cosmozoica




¿Quiénes la postularon?

· Arrhenius.
· Justus Liebig.
· Helmut von Helmont.


Postulados de la teoría


· Habla sobre el origen de los seres vivos a partir de la llegada de un meteorito que inoculó formas de vida similares a las bacterias que posteriormente fueron evolucionando hasta las formas actuales.
· Esta teoría, se basa fundamentalmente en la observación de la fecundación de las lavas, originariamente estériles (cuando su temperatura es elevada), por esporas traídas por el viento y establece que este fenómeno podría ocurrir a escala cósmica, es decir, que la Tierra habría sido sembrada por gérmenes provenientes del cosmos.
· Establece que los gérmenes habrían llegado empleando a los meteoritos como vehículo de transporte.
· Establece que los gérmenes habrían llegado en medio de polvo cósmico movido por radiación cósmica.



V. Teoría de la Evolución


¿Quiénes la postularon?


· Alexander Oparín
· Stanley Miller


Postulados de la Teoría.




· Oparín postula que se dio en dos fases:·

Evolución Química: En los tiempos prebióticos, es decir antes del origen de la vida, la atmósfera de la Tierra habría carecido de oxígeno, como sucede en la actualidad con los planetas Júpiter y Saturno. Contenía principalmente Hidrógeno, amoníaco, metano y agua El agua, en forma de vapor, cubría parte de la superficie de la Tierra, aunque normalmente estas moléculas son poco reactivas podrían haber interactuado gracias a la energía provista por la radiación u ultravioleta, el calor y las descargas eléctricas. Como producto de esas reacciones se habrían originado moléculas mayores tales como los carburos, que por reacción con vapores acuáticos habría originado los hidrocarburos que a su vez, en reacción con amoníaco, habrían dado origen a: amidas, aminoácidos, bases nitrogenadas y azúcares.


· Evolución Biológica: El enfriamiento progresivo de la Tierra habría permitido la formación de lagunas en las cuales todas esas moléculas habrían permanecido en solución, constituyendo un verdadero “caldo nutritivo” en el cual se habría favorecido las interacciones entre ellas. Así se habrían llegado a formar Proteínas y Polisacáridos, que habrían reaccionado para originar los denominados Coacervados, esto es, complejos moleculares que poseen una superficie semejante a membrana y un interior líquido y que tendrían algunas capacidades vitales, tales como: alimentación, metabolización, crecimiento, reproducción.


o Miller pudo constatar que un 10% del sistema se había transformado en cierto número de compuestos identificables: un dos por ciento del carbono se empleó en fabricar aminoácidos como los que constituyen las proteínas, gracias a un experimento en el cual reprodujo en el laboratorio aquella presunta atmósfera y la sometió a una de las fuentes de energía seguramente abundantes en aquellos remotos tiempos: descargas eléctricas. el resultado fue asombroso, pues apareció en su “matraz” una serie de aminoácidos, componentes esenciales de los seres vivos actuales.




Conclusión








Para que las especies se modifiquen es necesario la variación, es decir la variación es la materia prima para la evolución. Sin embargo la variación surge de la reproducción y esta es una complicación de la unidad autopoietica. Para que se produzca una unidad reproducida en necesario que este establecida una unidad previa. , en palabras de Louis Pasteur: “la vida proviene solo de la vida, la herencia en ultimo termino, es autorreproduccion”. Por lo tanto si la evolución es dependiente de la variación y esta a su vez de la reproducción, todas estas se subordinan a la organización autopoietica de los sistemas vivos. Entonces la evolución puede ser vista como una red histórica ya que la importancia no radica en la especie si no en la unidad, en la ontogenia del organismo, y esta sufre modificación al compensar las deformaciones del medio manteniendo su autopoiesis, esta compensación o mantención de la organización es la concatenación de todos los eventos por los cuales el individuo transcurre en la historia de su vida.
¿Conseguiremos algún día descubrir la verdad sobre nuestros orígenes? Sí, de ser cierto lo que afirma Jacques Monod: "Todo ser vivo es también un fósil. Lleva en sí, y hasta en la estructura microscópica de sus proteínas, las huellas, cuando no los estigmas, de su ascendencia".








Teoría de la Selección Natural





Los británicos Charles Darwin y Alfred Russel Wallace trabajaron de forma independiente, realizaron extensos viajes y, casualmente, desarrollaron la misma teoría acerca de cómo cambió la vida a lo largo del tiempo así como también el mecanismo para ese cambio: la selección natural.
Darwin (1809-1882) nació en Shrewsbury, Inglaterra e hizo estudios inconclusos en medicina y para clérigo. Tanto su abuelo Erasmus Darwin como su padre Robert W. Darwin, eran médicos renombrados. Ambos ejercieron sobre él una gran influencia.
Darwin era aficionado a la geología, lo que le permite más adelante hacer interpretaciones sobre los estratos geológicos en los procesos de fosilización. El Almirantazgo Británico realizó una expedición cartográfica alrededor del mundo, e invitó a Darwin a realizar estudios sobre botánica, zoología y geología. A la edad de 22 años, Darwin se embarcó el 27 de diciembre de 1831 en el H.S.M. Beagle. El viaje duró 5 años, comenzando por las costas de Sudamérica y luego alrededor de todo el mundo
Darwin colectó especimenes de plantas, animales y fósiles y realizó extensas observaciones geológicas. Se percató que había una gran diversidad de especies de plantas y animales en las costas tropicales a diferencia de las especies europeas. En un principio, estaba convencido de la invariabilidad de las especies, sin embargo al advertir la gran diversidad empezó a dudar de ello. Cuando desembarca en las islas Galápagos, frente a Ecuador, observó las especies de pinzones y tortugas gigantes y advirtió sus adaptaciones a los diferentes hábitats isleños, qué, aunque emparentadas entre sí, las formas estaban diferenciadas.
Darwin sabía que el hombre había podido producir diversas y múltiples formas de vegetales y animales domesticados por medio de la selección artificial (por ejemplo, variedades de maíz, razas de perros, etc.). Este es un modelo de lo que ocurre en la naturaleza como resultado a cambios parecidos de las fuerzas naturales durante largos períodos de tiempo.
Darwin estaba convencido que las especies de animales se desarrollan en direcciones muy diversas tan pronto como se aíslan geográficamente unas con otras (principio de la idea de la variabilidad). Sin embargo no sabía el mecanismo de cómo se llevaba a cabo, hasta que llegó a sus manos el libro “Ensayo sobre el Principio de Población”, de Robert Thomas Malthus (1766-1834). Éste menciona que mientras las poblaciones humanas crecen en una proporción geométrica (por ejemplo, 4, 8, 16, 32, etc.), los alimentos crecen en una progresión aritmética (por ejemplo, 2, 4, 6, 8, etc.) lo que trae como consecuencia las guerras y la muerte por hambruna. Darwin pensó que en el reino animal pasaba lo mismo, que los animales tenían que competir entre los de su misma especie y con los de distintas especies para sobrevivir, deduciendo la “lucha por la existencia” (principio del pensamiento maltusiano).
Darwin observa que los animales depositan miles de huevos, sin embargo la población permanece constante, y concluye que casi todos mueren a una edad temprana y únicamente los individuos más fuertes, rápidos, astutos o con buen camuflaje escapan de sus predadores, lo que no sucede con los débiles. El ambiente actúa como filtro, realiza un proceso de selección natural de los individuos, eliminando aquellos que no se aclimatan, los que sufren los embates de los agentes patógenos o la competencia (principio del concepto de la selección natural).



Darwin plasmó lo anterior en su obra, pero sus planes se vieron frustrados por Alfred Russell Wallace (1823-1913). Wallace pasó muchos años en Sudamérica recolectando animales para los museos ingleses. En 1854, abandonó Inglaterra para estudiar la historia natural de Indonesia. Al hacer un recorrido por el Archipiélago Malayo observó que su fauna se asemejaba a las especies de Asia. De esta manera dedujo que las especies podían transformarse y en julio de 1858 publica sus ideas en un artículo, el cual, define por primera vez el rol de la selección natural en la formación de las especies. Al revisar la obra de Malthus, llega a la misma conclusión que Darwin en la lucha por la existencia en el reino animal.
Wallace envía a Darwin un manuscrito en que detalla que sus conclusiones eran iguales a su aún no publicada teoría. Con conocimiento de causa, Darwin se apresuró en publicar, el 24 noviembre de 1859, su mayor tratado, El Origen de las Especies después de 21 años, pues había proyectado su publicación para después de su muerte. En la Sociedad Linneana, se leen primeo los textos de Darwin seguidos por los de Wallace. Debido a este evento, Wallace coautor de la teoría de la Selección Natural, permanece en el olvido hasta nuestros días. Si bien esta teoría se le atribuye generalmente a Darwin, es justo y necesario mencionar que ambos, Darwin y Wallace, la desarrollaron.


Un punto crucial de las teorías darwiniana y lamarkiana es que no explican adecuadamente las variaciones que presentan los individuos y que tienen que ser forzosamente heredadas; en caso contrario, únicamente afectaría a un grupo numeroso de organismos, pero no al total de la especie.
Mendel, publicó en 1866 sus descubrimientos sobre las leyes de la herencia, sin embargo, Darwin nunca tuvo conocimiento de tales investigaciones lo que le impidió comprender la relación existente entre la selección natural y “los efectos del uso y del desuso”.

En resumen, podemos considerar las ideas de Darwin en cuatro puntos:
1. Las especies se originan unas de otras por una serie de variaciones y mutaciones aleatorias, las cuales han ocurrido a lo largo del tiempo.
2. El proceso evolutivo es continuo y gradual en todos los individuos, esto es, no ocurren saltos ni interrupciones, en donde una forma pase a otra muy distinta.
3. Todos los organismos semejantes están relacionados por medio de su historia evolutiva, donde se observan antepasados comunes.

La selección natural condiciona el curso del proceso evolutivo, es decir, la evolución de las especies no está forzada ni dirigida por una presión ajena a dicho proceso, sino que es un resultado aleatorio.

EXTINCIÓN

En biología y ecología, extinción es la desaparición de todos los miembros de una especie o un grupo de taxones. Se considera extinta a una especie a partir del instante en que muere el último individuo de ésta. Debido a que su rango de distribución potencial puede ser muy grande, determinar ese momento puede ser dificultoso, por lo que usualmente se hace en retrospectiva. Estas dificultades pueden conducir a fenómenos como el Taxon Lazarus, en el que una especie que se presumía extinta reaparece abruptamente tras un período de aparente ausencia. En el caso de especies que se reproducen sexualmente, la extinción es generalmente inevitable cuando sólo queda un individuo de la especie, o únicamente individuos del mismo sexo.

A través de la evolución, nuevas especies surgen a través de la especiación, así como también otras especies se extinguen cuando ya no son capaces de sobrevivir en condiciones cambiantes o frente a otros competidores. Normalmente, una especie se extingue dentro de los primeros 10 millones de años posteriores a su primera aparición, aunque algunas especies, denominadas fósiles vivientes, sobreviven prácticamente sin cambios durante cientos de millones de años. La extinción es histórica y usualmente un fenómeno natural. Se estima que cerca de un 99,9% de todas las especies que alguna vez existieron están actualmente extintas.
Antes de la dispersión de los humanos a través del planeta, la extinción generalmente ocurría en continuo bajo índice, y las extinciones masivas eran eventos relativamente raros. Pero aproximadamente 100.000 años atrás, y en coincidencia con el aumento de la población y la distribución geográfica de los humanos, las extinciones se han incrementado a niveles no vistos antes desde la extinción masiva del Cretácico-Terciario. A esto se le conoce como la extinción masiva del Holoceno, y se estima que para el año 2100 la cantidad de especies extintas podría alcanzar altas cotas, incluso la mitad de todas las especies que existen actualmente






ORIGEN DE LA VIDA

Hace cuatro mil millones de años la Tierra era una bola incandescente con la superficie apenas cubierta por una leve costra continuamente destrozada por la frecuente caída de los meteoritos que en aquella época aún poblaban el sistema solar.


Ninguna forma de vida actual hubiera sido capaz de sobrevivir en su superficie, pero en aquel caos continuo provocado por constantes erupciones volcánicas, geíseres y bombardeo de meteoritos y rayos cósmicos, se encontraban presentes todos los elementos necesarios para la vida.

En los lugares donde la corteza terrestre había tenido tiempo de solidificarse y enfriarse algo se podían llegar a producir precipitaciones de lluvia formando charcas y lagos de un líquido que no era agua precisamente, sino una mezcla de agua, amoníaco, metano, ácidos y sales en suspensión. Más adelante se unieron a esta atmósfera gases como monóxido y dióxido de carbono y nitrógeno.

Todo ello, con el continuo aporte de energía por parte del sol y la temperatura interna del planeta, producía reacciones químicas que generaban moléculas de un cierto grado de complejidad como formaldehido, ácido prúsico, glicinas y alcoholes. También se formaban otras muchas substancias complejas pero en mucha menor proporción, y con el tiempo la atmósfera primitiva contuvo ingentes cantidades de moléculas complejas.
Poco después ya no teníamos un caldo de átomos, sino un caldo de moléculas de bastante complejidad. Los sucesivos hervores, las erupciones volcánicas, las descargas eléctricas de los rayos bombardeando ese caldo de moléculas hizo que de vez en cuando muchas de estas moléculas fueran destruidas pero también hizo que se formaran, por azar, algunas moléculas más complejas.
El aporte energético era tan grande que las sustancias simples tendían a reagruparse con tanta o más rapidez que las complejas en destruirse, por eso a lo largo de millones de años el caldo fue conteniendo cada vez una mayor proporción de sustancias complejas.
El azar producía nuevas moléculas, millones de combinaciones cada día en todo el planeta, las moléculas más inestables eran destruidas con rapidez, las más estables perduraban por más tiempo, las más simples eran usadas en nuevos experimentos, uno tras otro, día tras día, año tras año, milenio tras milenio.
Pero por muy complejas que fueran esas moléculas seguían siendo moléculas inertes, hubieron de pasar cientos de millones de años de experimentos para que por azar surgiera una molécula capaz de autoreplicarse.

Durante casi mil millones de años se había preparado un complejo caldo de cultivo y en ese caldo aquella primera molécula autoreplicante tuvo alimento y energía suficientes para reproducirse durante cientos de generaciones, hasta cubrir la totalidad de la extensión de los mares.
Ahora teníamos una molécula capaz de tomar otras moléculas más pequeñas de su entorno para autoreplicarse. Apenas necesitó unos cientos de generaciones, quizás menos de un mes, para extenderse por todas las zonas del planeta donde pudiera encontrar alimento y energía. Fue la primera explosión demográfica del planeta y continuó hasta que fueron tantas moléculas que se hizo difícil encontrar alimento para todas ellas.
Cuando esto ocurrió ya eran trillones las moléculas idénticas que se habían formado.
Pero la autoreplicación no siempre se producía en condiciones adecuadas. A veces faltaba algún alimento, alguna sustancia necesaria para la replicación y eso hacía que fallara. Los componentes de aquel fracaso servían de alimento para otras replicaciones, al fin y al cabo eran trillones. Algunas veces el error que se producía no suponía la destrucción de la molécula, ésta era capaz de reproducirse en las mismas condiciones que su progenitora aunque una sutil diferencia podía representar una ligera ventaja o desventaja con respecto a las demás moléculas de su entorno.

Eran trillones de moléculas en todo el mundo intentando reproducirse dos o tres veces al día. Casi todas esas replicaciones eran correctas, pero había fallos, quizás una de cada mil replicaciones. De esos fallos la mayor parte eran inviables pero unos pocos, quizás uno cada cien millones de errores, provocaban una molécula que también era capaz de autoreplicarse. Pero era una molécula distinta, no mejor ni peor, pero en determinadas condiciones podía ser más fuerte, más estable, o más capaz de replicarse sin errores.
Cuando una molécula tenía una cierta ventaja tendía a reproducirse más, por eso las moléculas que aprovechaban mejor alguna característica de su entorno, que eran más fuertes o estables, o que se reproducían con más eficiencia acababan sustituyendo a las más simples y frágiles. Así fue como comenzó la evolución de las especies, aunque sólo había una única molécula (aún no ser vivo) evolucionando.
Millones, billones, trillones de experimentos más tarde, surgió una molécula capaz de rodearse de una membrana dando lugar a la primera célula procariota.

Anteriormente ya habían surgido por azar moléculas que se rodeaban de una membrana. Pero la composición de esa membrana era demasiado fuerte, demasiado impermeable, demasiado frágil o demasiado lo que sea para que resultara útil. Aquellos experimentos fracasaron.

Cuando uno de aquellos trillones de experimentos tuvo éxito apareció la primera célula procariota de la historia, más parecida a una bacteria que a una célula de las que componen nuestros cuerpos, pero ya un ser vivo capaz de reaccionar a su entorno, protegerse de condiciones adversas, alimentarse y reproducirse.
Mucho más capaz que las moléculas autoreplicantes que poblaban el planeta, la primera célula procariota se reprodujo una y otra vez produciendo la segunda explosión demográfica de la historia.

La expansión de la vida no eliminó a las moléculas autoreplicantes, aún hoy en día siguen existiendo como virus y otras formas prebióticas, pero el planeta ya no era de las moléculas, sino de las células.

Seguían siendo células procariotas, es decir, simple material genético envuelto en una membrana, tal como lo que hoy en día es el núcleo de una célula. Pero su grado de complejidad produjo dos efectos contrapuestos. Por un lado la célula era tan compleja que distintas partes de la molécula actuaban en condiciones diferentes lo que hacía que fuera más adaptable a su entorno. Por otro su complejidad producía errores de replicación con más frecuencia que en el caso de las moléculas. La mayor parte de estos fallos provocaban la destrucción de la célula, pero otros fallos suponían pequeños cambios en su diseño. A veces ese cambio suponía una ventaja, otras veces era un cambio perjudicial y en ocasiones era totalmente neutro. Con el tiempo llegó a haber muchas versiones diferentes de la célula original, cada una con diferentes probabilidades de supervivencia en diferentes entornos.

En aquella época había millones de hábitats posibles, algunas células eran más capaces de sobrevivir en unos que en otros lo cual llevó a la primera especialización de la vida, distintos hábitats y distintas células pintando los colores del primer cuadro de la vida en la Tierra.



Había células capaces de tomar determinados compuestos y convertirlos en aminoácidos. Otras podían usar la energía del sol para fabricar azúcares. Otras células, en fin, podían ensamblar los aminoácidos para fabricar proteínas.

La actividad de cada célula era inconsciente y caótica, pero lo que hacía cada una era dirigirse a los lugares donde podía sobrevivir mejor. Los desechos de unas podían servir de alimento a las otras, era inevitable que al cabo de poco tiempo surgieran agrupaciones de dos o más células procariotas para formar una colonia con mayores posibilidad de supervivencia que las que tenían cada una por separado.
Se formaron miles, millones de colonias, billones de experimentos condenados a fracasar.
Pero entre todos aquellos fracasos algunas de esas colonias llegaron a encerrarse en una nueva membrana dando lugar a las primeras células eucariotas.



De toda aquella producción de células extrañas e inviables, las que no tenían posibilidades de supervivencia eran destruidas de inmediato, pero de vez en cuando surgía una combinación que tenía más posibilidades de supervivencia que sus congéneres. Estas células competían con ventaja contra sus antecesoras más simples y en pocas generaciones eran capaces de acabar con su anterior supremacía.

La reproducción de aquellas primeras células seguía siendo delicada y se producían errores con bastante frecuencia. A veces unos componentes de la célula empezaban a replicarse antes que otros, lo que llevaba a la destrucción de la misma. Otras veces la célula mezclaba los cromosomas de distintos componentes de la célula y de ello salía algo totalmente distinto, una mutación. Casi siempre las mutacioes llevaban a la destrucción de las células pero algunas mutaciones eran capaces de seguir sobreviviendo y hasta de reproducirse generando una variedad diferente de la célula original. A veces se producían mutaciones beneficiosas, y eso hizo que las células descendientes fueran más capaces de sobrevivir que sus antecesoras.
Con el tiempo se formaron células muy complejas, algunas de tamaños inusitados para nuestra experiencia, se han encontrado células fosilizadas que podían medirse ¡en centímetros!.
La vida había estallado.



SELECCIÓN NATURAL


La selección natural es la base de todo el cambio evolutivo. Es el proceso a través del cuál, los organismos mejor adaptados desplazan a los menos adaptados mediante la acumulación lenta de cambios genéticos favorables en la población a lo largo de las generaciones. Cuando la selección natural funciona sobre un número extremadamente grande de generaciones, puede dar lugar a la formación de la nueva especie.
El carácter sobre el que actúa la selección natural es la eficacia biológica que se mide como la contribución de un individuo a la siguiente generación de la población. La eficacia biológica es un carácter cuantitativo que engloba a muchos otros relacionados con: la supervivencia del más apto y la reproducción diferencial de los distintos genotipos o alelos. Los individuos más aptos tienen mayor probabilidad de sobrevivir hasta la edad reproductora y, por tanto, de dejar descendientes a las siguientes generaciones; la reproducción diferencial puede deberse a diferentes tasas de fertilidad o fecundidad o a la selección sexual.

Si las diferencias en eficacia biológica tienen una base genética variable (y habitualmente la tienen) la selección natural favorecerá a aquellos fenotipos que produzcan una mayor contribución de descendientes a la siguiente generación pues, si un fenotipo (A) contribuye más que otro (B) a la población, en la siguiente generación, los genotipos (alelos) que causan el fenotipo A incrementarán su frecuencia en detrimento de la de los genotipos (alelos) que producen el fenotipo B. Por tanto, la selección es un proceso direccional de cambio de las frecuencias génicas.

La descripción de los cambios experimentados por las frecuencias génicas cuando actúa la selección natural es mucho más complicada que la relacionada con otros procesos de cambio de las frecuencias génicas, porque la selección actúa sobre fenotipos y la correspondencia entre estos y los genotipos o alelos no siempre es inmediata y cambia en cada caso dependiendo del tipo de acción génica.

Por otra parte, como hemos comentado anteriormente, la selección natural no siempre actúa una sola vez a lo largo de la vida de los individuos, ni tampoco en la misma fase. Por tanto, la evaluación de su efecto se hace comparando las frecuencias génicas y genotípicas, en generaciones sucesivas; en individuos en fase cigótica.






ESPECIACIÓN

La especiación o lo que es lo mismo, la formación de nuevas especies, se puede considerar como el proceso evolutivo por el que algunas poblaciones de una especie se diferencian estableciendo barreras de flujo genético consecuencia del desarrollo de mecanismos de aislamiento reproductivo (imposibilidad de dar descendencia fértil).

Para entender que es la especiación, hay que definir primero “especie”. Aunque el concepto de especie es básico dentro de la biología, no hay todavía un claro consenso para su definición. La definición más generalizada es que las especies son poblaciones naturales, que comparten una serie de rasgos distintivos, que son capaces de reproducirse entre si de forma efectiva o potencial, y que evolucionan de forma separada.

El proceso de la especiación es de suma importancia para explicar la diversidad de especies actual. Se pueden distinguir tres tipos básicos de especiación: la especiación alopátrica, la parapátrica y la simpátrica.

Especiación alopátrica
También llamada especiación geográfica. Es el mecanismo de especiación que cuenta con un mayor número de ejemplos documentados. Consiste en la separación geográfica de poblaciones que comparten un acervo genético común, de tal forma que se lleguen a producir dos o más poblaciones geográficas aisladas que, sometidas a las peculiares condiciones ambientales del sector geográfico ocupado, han evolucionado independientemente hasta generar nuevas especies.

La separación entre poblaciones puede ser debida a migración, a extinción de las poblaciones situadas en posiciones geográficas intermedias, o mediada por sucesos geológicos. La barrera puede ser geográfica o ecológica, como por ejemplo cumbres que separan valles en las cordilleras, continentes que se separan o zonas desérticas que separan zonas húmedas. Este tipo, muy adecuado para generar el aislamiento reproductivo de especies muy móviles, parece ser el mecanismo de especiación más extendido entre los vertebrados.







Especiación parapátrica
Seria similar a la especiación alopátrica. Sin embargo, la especiación se produce sin una separación geográfica completa de las poblaciones. De hecho la especie “hija” puede compartir parte del rango de distribución con la especie “madre” e hibridar en las zonas de contacto. Las poblaciones suelen divergir debido tanto a factores aleatorios como a la selección local. Este proceso suele darse en animales muy poco móviles (no migran u ocupan áreas muy reducidas) o que tienden a vivir en grupos cerrados, lo que provoca que las poblaciones de los extremos del rango de distribución de la especie apenas tengan flujo genético entre ellas.


Especiación simpátrica


Este tipo de especiación implica la divergencia de algunas poblaciones hasta conseguir independencia evolutiva dentro de un mismo espacio geográfico. Habitualmente conlleva que las nuevas poblaciones utilicen nichos ecológicos diferentes, dentro del rango de distribución de la especie ancestral, por tanto, la divergencia en simpatría, suele estar impulsada por la especialización ecológica en algunas poblaciones. El aislamiento reproductor en este proceso puede surgir como consecuencia de la colonización y explotación de nuevos hábitat por individuos genéticamente diferenciados por mutaciones cromosómicas.


Como hemos visto todos los tipos de especiación tienen un requisito, que es el impedimento al flujo genético entre poblaciones. El aislamiento reproductivo puede estar producido por diversos tipos de barreras reproductivas que se pueden catalogar básicamente en prezigóticas y postzigóticas, dependiendo de en que momento actúen. Las barreras prezigóticas implican impedimentos para la formación de zigotos. Las barreras postzigóticas resultan de todas aquellas situaciones en las que los zigotos, si llegan a adultos, tienen anulada su eficacia biológica. Este es el caso de los híbridos entre especies, los cuales no suelen ser fértiles.




Dentro de las barreras prezigóticas tenemos todas aquellas situaciones que implican que dos especies no puedan aparearse, como pueden ser el aislamiento por diferenciación de hábitat o recursos y el aislamiento etológico.

Pero ¿qué causa la divergencia entre poblaciones y la aparición de nuevas especies? En principio la separación entre poblaciones debido a los mecanismos de aislamiento puede aparecer en cualquier situación poblacional. Como hemos visto, esta separación puede ser tanto geográfica, como etológica o ecológica. Tanto la deriva genética, como la selección natural o la mutación pueden causar esta divergencia.

La deriva genética suele darse en los eventos de colonización de nuevos hábitats, donde suelen estar implicados un número reducido de individuos, lo que supone una proporción muy pequeña de la diversidad genética de la especie original. Como en estos individuos no están representados todos los alelos existentes en la población original, estas situaciones suelen conducir a una rápida diferenciación con respecto a la población original. A esto se le ha llamado “efecto fundador” y puede ser un factor importante en la especiación alopátrica.

La divergencia necesaria para producir independencia evolutiva también puede estar impulsada por la selección natural, la cual puede estar implicada en todos los tipos de especiación, con especial preponderancia en la especiación alopátrica y simpátrica. Cuando las poblaciones quedan separadas geográficamente se dan las condiciones para que la adaptación al ambiente pueda seguir un curso diferente en cada población, implicando así la modificación de distintos genes. Pero también la evitación de la competencia por un recurso, la explotación de nuevos recursos, el evitar parásitos o competidores interespecíficos, etc..., pueden ser el motor de la divergencia y posterior especiación, sin que para ello tenga que haber una separación geográfica clara; es suficiente con una separación ecológica.

Por último, la aparición de mutaciones comunes a un grupo de individuos como las reordenaciones cromosómicas o los elementos genéticos egoístas, también pueden estar involucrados en el desarrollo de aislamiento reproductivo entre poblaciones.

Todavía hay grandes lagunas en el conocimiento de la especiación, como saber cuanta especiación es causada por deriva genética y mutación, y cuanta se debe a los procesos de adaptación al medio. Además, se conoce muy poco de la arquitectura genética que, por ejemplo, causa la inviabilidad de los híbridos. Aunque la imagen clásica de que las especies surgen como el subproducto de la evolución de poblaciones en alopatría sigue siendo dominante, otros tipos de especiación como la simpátrica, pueden llegar a adquirir más importancia según se analizan más datos que nos brinda la naturaleza.


ADAPTACIÓN

En el curso de la evolución, los organismos han experimentado sucesivas adaptaciones estructurales cuando el medio ambiente cambio o cuando emigraron a un nuevo medio ambiente. Como resultado de las readaptaciones sucesivas muchos organismos actuales poseen estructuras o mecanismos fisiológicos inútiles e incluso nocivos, que en un tiempo le brindaron ventajas manifiestas cuando el organismo estaba adaptado a un medio diferente.


Las adaptaciones de diversas partes de la boca de algunas animales a los alimentos que ingieren figuran entre las más sorprendentes que pueden citarse. Las partes bucales de algunos insectos están adaptadas para aspirar el néctar de ciertas especies de plantas; en otros, la adaptación es para chupar sangre por picadura o para mascar vegetales. Los picos de varias clases de aves y los dientes de algunos mamíferos pueden adquirir gran adaptación para tipos peculiares de alimentos.
En muchos animales, la adaptación especializada a cierto genero de vida es simplemente la ultima fase de una cambiante sucesión de adaptaciones. Por ejemplo tanto el hombre como el babuino, cuyos inmediatos antecesores eran arborícolas, regresaron a la superficie del terreno, de modo que se readaptaron a la marcha.
Tenemos como ejemplo el caso de los canguros trepadores de Australia son descendiente de marsupiales de vida exclusivamente en el suelo; de estos derivaron formas que por radiación adaptativa volvieron a los árboles y se desarrollaron miembros adaptados para trepar. Algunos de estos marsupiales dejaron de nuevo los árboles y se readaptaron a la vida del terreno, con alargamiento de las extremidades posteriores como las conocemos hoy día en los canguros, adaptados a la marcha a saltos. Algunos de estos canguros recurrieron por tercera vez a los árboles, pero sus patas estaban ya tan especializadas al salto que no podían asirse a un tronco, de modo que hoy trepan abrazándose a ellos, a la manera de un oso.

Adaptaciones fisiológicas:

Uno de los tipos de mutaciones favorables es la que abrevia la temporada del crecimiento de un vegetal o del tiempo total necesario para que un insecto llegue a la fase adulta. Estas mutaciones permiten que un organismo sobreviva más alejado del ecuador, lo que le brinda nuevas áreas de espacio vital y nuevas fuentes de alimento.
Otros seres han resuelto el problema de vivir en las regiones polares mediante el recurso de quedar adormecidos durante la estación más fría o por migración. Muchas aves, pero solo unos pocos mamíferos emigran hacia el sur para evitar los crudos meses del invierno.
Otros mamíferos (monotremas, musarañas, roedores y murciélagos) se adormecen durante las temporadas invernales.
Las aves y los mamíferos son los únicos seres con mecanismos reguladores de la temperatura interna, que se mantiene constante a pesar de grandes fluctuaciones de la externa. Estos animales termostatitos se denominan homeotermos (sangre caliente) por contraste, los peces, anfibios, reptiles y todos invertebrados son poiquilotermos (sangre fría), puesto que su temperatura es casi la misma que la del ambiente.
Los peces de mar están adaptados a sobrevivir dentro de cierta gama de presiones, y por lo tanto a una profundidad determinada. En consecuencia, los animales de la superficie perecen aplastados por las enormes presiones de la profundidad, mientras que los abismales estallan en la superficie. Por ejemplo: la ballena, por excepción puede sufrir grandes diferencias de presión, hasta la de 800 metros, al parecer sin inconveniente. Se supone que los alvéolos pulmonares se colapsan al llegar la presión a cierto punto y los gases no pasan a la sangre.

Adaptaciones de las Aves: Anatomía y fisiología

La mayoría de las aves puede volar y desciende de antepasados que podían hacerlo, aunque hay especies, que se han extinguido, que no eran voladoras. Además, el cuerpo de las aves está modificado para aumentar la eficacia del vuelo. Los huesos de los dedos y las articulaciones de las patas delanteras están fusionados formando un soporte rígido para las grandes plumas de vuelo de las alas. También existe fusión ósea en el cráneo y en la cintura pelviana, así se obtiene una mayor resistencia y ligereza. En las aves adultas muchos de los huesos están huecos, carecen de médula y están conectados con un sistema de sacos o bolsas aéreos dispersos por todo el cuerpo. El esternón, o hueso del pecho, de la mayoría de ellas es grande y tiene una quilla o cresta central llamada Carina. El esternón y la Carina soportan algunos de los principales músculos utilizados en el vuelo. En las aves de la subclase Ratites -como el avestruz, el kiwiy afines- que han perdido la capacidad de volar, el esternón tiene un tamaño más reducido y la Carina se ha perdido.
Las mandíbulas de las aves actuales se alargan como picos sin dientes y están cubiertas con una capa córnea llamada la ranfoteca. En la mayoría de las especies es dura, pero también puede ser correosa, como en los andarríos y en los patos. La ausencia de dientes reduce el peso del cráneo.
Las aves no tienen glándulas sudoríferas y no pueden enfriar su cuerpo por transpiración. Durante el vuelo, el calor se dispersa con el paso del aire a través de su sistema de sacos aéreos y, cuando están en reposo, jadeando.
Una técnica de supervivencia durante el invierno, muy común en los mamíferos, pero rara en las aves, es la disminución del ritmo de los procesos fisiológicos. Esto incluye la reducción de la temperatura corporal y, en los casos extremos, se alcanza la hibernación. Durante mucho tiempo se pensó que las aves no hibernaban. Sin embargo, las últimas investigaciones demuestran que diversas especies de chotacabras, vencejos y colibríes del desierto o de áreas de alta montaña, donde las noches de invierno son muy frías, pueden entrar en un estado de letargo, similar a la hibernación, para conservar energía.

Adaptaciones de los vegetales al ambiente acuático.

Los vegetales acuáticos se distribuyen en el ambiente de las aguas oceánicas y en el de las aguas continentales.
Las algas presentan modificaciones en su forma corporal, las cuales reflejan su adaptación a las condiciones de alimentación y de luminosidad de la zona en que se encuentran.


BIODIVERSIDAD


En los últimos tiempos hay una palabra que se ha popularizado notablemente, como consecuencia de la creciente preocupación social por los temas medioambientales: “biodiversidad”. La oímos y leemos constantemente en los medios de comunicación, y nosotros mismos la usamos en nuestras conversaciones. Sin embargo, ¿cuánta gente hay que sepa qué significa? Mi percepción es que, en general, se entiende la biodiversidad como el número de especies existente. Realmente, esto no es así. Se trata de algo más complejo, que va mucho más allá, expresándose a todos los niveles de la vida, desde el más fundamental al más global. Para ser exactos, se suele hablar de los tres siguientes: el genético, el específico y el ecosistémico.


El concepto de biodiversidad va más allá del número de. También hace referencia a la estructura. Para cuantificar la biodiversidad, los científicos utilizan índices: cifras que por sí solas no significan nada, pero que sirven para comparar y observar cambios. Quizás los índices más famosos sean los usados en bolsa, que nos permiten saber si tal día ha habido ganancias o pérdidas, y con qué diferencia lo ha hecho la de Nueva York respecto de la de Madrid o la de Berlín. Existen múltiples formas de elaborar estos índices; algunos tienen en cuenta el número de clases de elementos y el de la frecuencia con que hallamos cada elemento. Es decir, es diferente la biodiversidad en un huerto en el que la mitad de lo que hemos plantado son tomateras y los dos cuartos restantes meloneras y sandías (tres tipos de elementos, uno constituyendo la mitad del total y cada uno de los otros una cuarta parte), que en otro huerto en el que hemos sembrado un tercio de cada hortaliza (las mismas tres clases de elementos, pero esta vez en proporciones iguales). Obviamente este ejemplo simplifica mucho y no tiene en cuenta las malas hierbas, los caracoles, lombrices, babosas, pájaros, hongos, arañas, insectos y demás seres vivos que aparecerán asociados al cultivo, pero creo que es bastante ilustrativo. A pesar de esto, en ocasiones podemos hallar estudios en los que se ha utilizado como índice el número de especies. En sentido estricto, en la ciencia de la Ecología, esto no es la diversidad, sino la riqueza, lo cual no quiere decir que sea incorrecto usar esos índices, si cumplen su función en ese estudio concreto. Otras veces, como ocurre en el informe de la Estrategia española para la conservación y el uso sostenible de la diversidad biológica, elaborado con motivo del Convenio sobre la Diversidad Biológica se hace referencia al número de especies que hay un área determinada.
El hecho de considerar la diversidad como algo más que el número de clases de elementos (sean especies, genes o ecosistemas) tiene una implicación muy importante: la pérdida de biodiversidad no se produce sólo con la extinción de especies o desaparición de ecosistemas: también las alteraciones en las estructuras de los paisajes donde están los ecosistemas, de las comunidades compuestas por especies, de la distribución de esas especies, etcétera, pueden suponer una pérdida de biodiversidad, con las probables consecuencias negativas asociadas.








VARIACION GENETICA

La variabilidad genética es una medida de la tendencia de los genotipos de una población a diferenciarse. Los individuos de una misma especie no son idénticos. Si bien, son reconocibles como pertenecientes a la misma especie, existen muchas diferencias en su forma, función y comportamiento. En cada una de las características que podamos nombrar de un organismo existirán variaciones dentro de la especie. Por ejemplo, los jaguares del pantanal en Brasil son casi del doble del tamaño (100 kilos) que los jaguares mexicanos (entre 30 y 50 kilos) y sin embargo son la misma especie (Panthera onca).
Los casos más evidentes de variabilidad genética de las especies son las especies domesticadas, en donde los seres humanos utilizamos la variabilidad para crear razas y variedades de maíces, frijoles, manzanas, calabazas, caballos, vacas, borregos, perros y gatos, entre otros.
Gran parte de la variación en los individuos proviene de los genes, es decir, es variabilidad genética. La variabilidad genética se origina por mutaciones, recombinaciones y alteraciones en el cariotipo (el número, forma, tamaño y ordenación interna de los cromosomas). Los procesos que dirigen o eliminan variabilidad genética son la selección natural y la deriva genética.
La variabilidad genética permite la evolución de las especies, ya que en cada generación solamente una fracción de la población sobrevive y se reproduce transmitiendo características particulares a su progenie.




23 nov 2010

GENOMA HUMANO

El genoma humano es el genoma (del griego ge-o: generar, que genera, y -ma: acción) del Homo sapiens, es decir, la secuencia de ADN contenida en 23 pares de cromosomas en el núcleo de cada célula humana diploide.


De los 23 pares, 22 son cromosomas autosómicos y un par es determinante del sexo (dos cromosomas X en mujeres y uno X y uno Y en hombres). El genoma haploide (es decir, con una sola representación de cada par) tiene una longitud total aproximada de 3200 millones de pares de bases de ADN (3200 Mb) que contienen unos 20.000-25.000 genes (las estimaciones más recientes apuntan a unos 20.500). De las 3200 Mb unas 2950 Mb corresponden a eucromatina y unas 250 Mb a heterocromatina. El Proyecto Genoma Humano produjo una secuencia de referencia del genoma humano eucromático, usado en todo el mundo en las ciencias biomédicas.

La secuencia de ADN que conforma el genoma humano contiene codificada la información necesaria para la expresión, altamente coordinada y adaptable al ambiente, del proteoma humano, es decir, del conjunto de las proteínas del ser humano. Las proteínas, y no el ADN, son las principales biomoléculas efectoras; poseen funciones estructurales, enzimáticas, metabólicas, reguladoras, señalizadoras..., organizándose en enormes redes funcionales de interacciones. En definitiva, el proteoma fundamenta la particular morfología y funcionalidad de cada célula. Asimismo, la organización estructural y funcional de las distintas células conforma cada tejido y cada órgano, y, finalmente, el organismo vivo en su conjunto. Así, el genoma humano contiene la información básica necesaria para el desarrollo físico de un ser humano completo.







Proyecto Genoma Humano

Genética y Derechos Humanos en México

Genética - Opinión Legal

Respaldar Archivos Online Gratis